If it's not what You are looking for type in the equation solver your own equation and let us solve it.
b^2-6b-49=0
a = 1; b = -6; c = -49;
Δ = b2-4ac
Δ = -62-4·1·(-49)
Δ = 232
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{232}=\sqrt{4*58}=\sqrt{4}*\sqrt{58}=2\sqrt{58}$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-6)-2\sqrt{58}}{2*1}=\frac{6-2\sqrt{58}}{2} $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-6)+2\sqrt{58}}{2*1}=\frac{6+2\sqrt{58}}{2} $
| 3x+2+53=180 | | m-(-631)=969 | | 25x-10x=20x-42 | | 4e-9=-1 | | x−67=104x= | | 5x-9+x=33 | | 25x-5x=20x-42 | | -125=n3 | | q-478=213 | | 25x-5x=20x41 | | (-3)(-16)=x | | 4c=c(5-8) | | 1-6x=-68 | | 9.25=x+1.75 | | u-55=57 | | 35+.10m=25+.15 | | -(7-1)-(7-1)=x | | 12-8x=-68 | | 9,5/2,5=x | | 4(x-3)+8/6=-2 | | 15+7x=120 | | w+538=979 | | -204+2x=-6x+76 | | 20x-x=-15x-40 | | 3(x+2)-5=-17 | | 7x-5=9x+1 | | 20x-5x=-15x-40 | | Y-10=2(x-8 | | (-30)(-1/3)=x | | 14x-166=130+6x | | 1/2(p+5=7.5 | | 9-5w=-11 |